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During the interaction of a low-frequency relativistic soliton with the electron density modulations of a wake
plasma wave, part of the electromagnetic energy of the soliton is reflected in the form of an extremely short
and ultraintense electromagnetic pulse. We calculate the spectra of the reflected and of the transmitted elec-
tromagnetic pulses analytically. The reflected wave has the form of a single cycle attosecond pulse.
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I. INTRODUCTION

Over the last few years we have witnessed a very signifi-
cant progress in the generation of ultraintense laser pulses.
Present day lasers produce pulses with intensities that ap-
proach 1022 W/cm2 f1g. In the so-called relativistic regime,
where the quiver energy of the electrons is equal to, or
greater than, their rest-mass energy, i.e., where the laser light
intensity exceedsI ,1018 W/cm2, interesting nonlinear
properties of the laser-plasma interaction come into playssee
e.g., the review articlesf1,2g, and the literature quoted
thereind. Among the rich variety of nonlinear processes that
accompany the electromagneticse.m.d pulse propagation
through a tenuous plasma, in the present paper we shall ad-
dress the Langmuir wavesf3,4g and the relativistic e.m. soli-
tons f5–8g that are left in the wake behind the laser pulse.

As is well known, the use of the collective electric fields
in plasmas in the laser wake-field acceleratorsLWFAd pro-
vides one of the most promising approaches to high-
performance compact electron acceleratorsf4g. The wake-
field acceleration of electrons has been observed in the
experiments reported in Ref.f9g ssee also the review article
f10gd. Another use of the wake field is in the intensification
of co-propagating short laser pulses, known as the photon
acceleratorf11g.

In Ref. f12g a method for generating ultrahigh-intensity
e.m. fields was proposed, based on the compression of a laser
pulse, the up-shifting of its carrier frequency, and the pulse
focusing by a counterpropagating, breaking plasma wave. In
this case the electron density modulations in the wake wave
act as parabolic relativistic flying mirrors. This method
makes it possible to achieve the critical field of quantum
electrodynamicssknown as the Schwinger limitf13gd with
present-day laser systems. Below, we shall show that the role
of the laser pulse can be taken by a relativistic e.m. soliton.
As is well known, for a long time solitons have attracted
great attention because of their resilient, robust behaviorf14g
and the research field on solitons has grown enormously.
This research topic ranges from the nonlinear wave dynamics
in shallow water, where solitons have been discoveredssee,
e.g., Refs.f14,15gd, to quantum field theoryf16g. Relativistic
e.m. solitons provide an example of coherent structures and

represent a fundamental feature of the nonlinear laser-plasma
interaction. As was shown in Refs.f5–8g, a significant frac-
tion of the order of 30–40 % of the laser pulse energy can be
trapped in these structures in the form of e.m. energy oscil-
lating at a frequency below the Langmuir frequencyvpe
=s4pne2/med1/2 of the surrounding plasma. The typical size
of these solitons is of the order of the collisionless electron
skin depthde=c/vpe. The e.m. fields inside the solitons con-
sist of synchronously oscillating electric and magnetic fields
plus a steady electrostatic field which arises from charge
separation as electrons are pushed outward by the pondero-
motive force of the oscillating fields. On a long time scale,
when the effects of the ion motion become important, the
ponderomotive force forms cavities in the plasma density,
which have been named post solitonsf17g. Post solitons
were observed experimentally in Ref.f18g with the use of the
proton imaging techniquef19g. However, for simplicity, in
the present paper we shall consider conditions when the ef-
fects of the ion motion can be neglected. We shall regard the
soliton in the reference frame co-moving with the wake wave
as a semicycle e.m. wave packet. As a result of the packet
interaction with the electron density modulations in the wake
wave, a portion of its energy is reflected in the direction of
propagation of the wake plasma wave. This results in the
transformation of the low frequency soliton field into a high
frequency ultrashort e.m. burst. In a tenuous plasma the fre-
quency up-shift can be so large that it can provide a different
mechanism for generating attosecond pulses, distinct from
the mechanisms described in the literaturef20g. In this paper
we limit our scope to the analytical investigation of this
mechanism in a simplified one-dimensional geometry. A nu-
merical investigation based on particle-in-cellsPICd simula-
tions in a more realistic geometry will be the subject of a
forthcoming paper.

The present paper is organized as follows. In the next
section we rederive the relationships between the frequency,
wave number, and amplitude of the incident pulse propagat-
ing in an underdense plasma and of the pulse reflected at the
relativistic mirror. In Sec. III we analyze the interaction of
the e.m. soliton with the electron density slab formed by a
breaking Langmuir wave. In the final section we discuss the
results obtained and present the conclusions.
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II. REFLECTION OF THE ELECTROMAGNETIC WAVE
AT THE RELATIVISTIC MIRROR

Let us consider the reflection of an e.m. wave at a rela-
tivistic mirror in the case when the wave propagates through
an underdense plasma. In this case the wave frequencyv0
and wave numberk0 are related by the dispersion equation

v0
2 = k0

2c2 + vpe
2 . s1d

The Langmuir frequencyvpe is a relativistic invariant, i.e., it
does not change under Lorentz transformations.

The linearly polarized incident wave propagates from the
right to the left, i.e., its wave four-vector isK=sv0/c,
−k0,0 ,0d, and the mirror moves from the left to the right
with the phase velocityV=svph,0 ,0d of the breaking plasma
wave. As is well knownf4g, the phase velocityvph=bphc of
the wake field is equal to the laser pulse group velocity,
which is close to the speed of light in vacuum if the laser
pulse propagates in an underdense plasma. The vector poten-
tial of the incident wave is given by

ainsx,td = a0sinsv0t + k0xd, s2d

where k0=sv0
2−vpe

2 d1/2/c and a0=eE0/mev0c with E0 the
amplitude of the the electric field,me ande the electron mass
and charge, andc the speed of light in vacuum. Performing a
Lorentz boost to the reference frame where the mirror is at
rest sdenoted as theM framed, we obtain for the vector po-
tential of the wave,

ainsx8,t8d = a0sinsv8t8 + k8x8d, s3d

where

v8 = gphsv0 + k0vphd, k8 = − gphsk0 + v0bphd/c, s4d

t8 = gphst − xbph/cd, x8 = gphsx − tvphd, s5d

bph=vph/c and gph=s1−bph
2 d1/2. We notice that the trans-

verse component of the vector potential is a relativistic in-
variant so thata0 does not change under the Lorentz trans-
formation. Assuming ideal reflection, we write for the
reflected e.m. wave in the reference frameM

arefsx8,t8d = − a0sinsv8t8 − k8x8d. s6d

Now we transform back to the laboratory frameL and obtain
for the reflected e.m. wave

arefsx,td = − a0sinsv9t − k9xd, s7d

where the frequencyv9 of the reflected wave is equal to

v9 = gphsv8 − k8vphd = gph
2 fv0s1 + bph

2 d + 2k0vphg . s8d

In the case of the e.m. wave propagating in vacuum, using
the dispersion relationv0

2=k0
2c2, we obtain from Eq.s8d, the

Einstein relationshipv9=v0s1+bphd / s1−bphd<4v0gph
2 for

bph→1 ssee Refs.f23,24gd. On the contrary, for the e.m.
wave in a plasma, we must use the dispersion relations1d
which yields

v9 = gph
2 fv0s1 + bph

2 d + 2sv0
2 − vpe

2 d1/2bphg . s9d

In the limit v0
2@vpe

2 we obtain the vacuum frequency up-
shift: v9=v0s1+bphd / s1−bphd, while in the casev0

2=vpe
2 we

find

v9 = v0
s1 + bph

2 d
s1 − bph

2 d
; vpe

s1 + bph
2 d

s1 − bph
2 d

< 2vpegph
2 . s10d

This limit corresponds to the case of the soliton reflection at
the mirror.

III. SOLITON INTERACTION WITH A BREAKING-WAKE
PLASMA WAVE

When an intense pulse interacts with a plasma, it forces
the plasma electrons to move with relativistic velocities. In
turn, this motion induces a wake field in the plasma. The
nonlinearity of the strong wake field leads to a nonlinear
wave profile and in particular to the steepening of the wave
and to the formation of sharply localized maxima, “spikes”,
in the electron densityf21g. This means that the wake field
enters the wave-breaking regimessee Ref.f2g references
thereind. Theoretically, the electron density in the spikes
tends to infinity, but remains integrablef2g. From the conti-
nuity equation it follows that the electron density is given as
a function ofX=x−vpht by

nesXd =
n0bph

bph − busXd
, s11d

wheren0 is the ion concentration in the plasma and the speed
of the electronssdivided by the speed of lightd bu varies from
−bph to bph. As a consequence, the electron density tends to
infinity at the breaking points and it is of the order ofn0/2 in
the regions in between. Thus, close to the wave breaking
conditions, we can use the approximate form of the electron
density,

nesXd =
n0

2
f1 + lpdsXdg, s12d

instead of Eq.s11d. Herelp is the wavelength in the wave
breaking regime. The density spike in Eq.s12d can be ex-
pected to partially reflect a counterpropagating e.m. wave.

In this section we study the interaction of a one dimen-
sional soliton with the wake fields12d. We recall that rela-
tivistic plasma solitons are formed during the interaction of a
high intensity laser pulse with the plasma. This interaction
causes the laser pulse to lose its energy which is transformed
into the energy of various plasma modes and into kinetic
energy of the charged particles. As the pulse propagates in
the plasma, the number of photons in the pulse is approxi-
mately conservedf8g. This fact, along with the loss of pulse
energy, leads to the decrease of frequency of the pulse down
to vcr=vpe. As a result, the part of the pulse energy becomes
trapped in electron density cavities in the form of low-
frequency radiation.

Let us assume that the soliton is formed by a circularly
polarized laser pulse. In order to describe the transverse com-
ponents of vector potential, we introduce the complex di-
mensionless functionA,
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A =
e

mec
2sAy + iAzd. s13d

Using the requirement that the vector potential vanishes at
infinity, one can write the stationary solution for the system
of the cold hydrodynamic electron equations and of Max-
well’s equationsf6g in the factorized form

Asx,td =
2«sv0dcoshf«sv0dvpex/cgeiv0t

cosh2f«sv0dvpex/cg − «2sv0d
; Csxdeiv0t,

s14d

where v0,vpe is the soliton frequency, and«sv0d=s1
−vpe

2 /v0
2d1/2. The form of the electric and magnetic fields

inside the soliton is shown in Fig. 1. In the limit of small
soliton amplitude, whenv0<vpe, i.e., «sv0d!1, the ampli-
tudeCsxd reduces toCsxd<2«sv0d /coshf«sv0dvpex/cg. This
limit provides an example of a soliton described by the so
called nonlinear Schrödinger equationssee Refs.f14,15,22gd.

Below we consider the interaction of the soliton with the
electron density modulation moving with relativistic velocity
in the wake plasma wave. The velocity of the wake field is
close to the velocity of light in vacuum and is directed along
the x axis. In order to simplify the calculations we perform
the Lorentz transformation to the reference frameM , where
the wake plasma wave is at rest and the soliton appears as an
e.m. wave packet incident from the right to the left. In this
reference frame the vector potential of the soliton, denoted
Ain8 sx8 ,t8d wherex=gphsx8+vpht8d andt=gphst8+vphx8 /c2d is
given by

Ain8 sx8,t8d = C„gphsx8 + vpht8d…eiv0gphst8+vphx8/c2d. s15d

At the mirror, which is assumed to be localized atx8=0, the
incident e.m. field depends on time as

Ain8 s0,t8d = Csgphvpht8deiv0gpht8. s16d

By performing the Fourier transform of the incident pulse,
we obtain

Ain8 s0,v8d =
1

2p
E

−`

`

Ain8 s0,tdeiv8tdt. s17d

In order to calculate the reflection and the transmission
coefficients we should consider the interaction of the e.m.
wave with the maximum of the electron density in the break-
ing Langmuir wave. Since in the wave breaking regime the
electron density can be described by the expressions12d, this
problem is equivalent to the scattering from a delta-function
potential. In this approach it is assumed that the continuum
model for the electron response remains applicable even ac-
counting for the up-shift of the frequency of the reflected
radiation.

Then the amplitudes of the reflected and of the transmit-
ted plane waves are given by the reflection and transmission
coefficientsf12g:

rsv8d = −
q

q − iv8
, tsv8d =

iv8

q − iv8
, s18d

whereq=2vpes2gphd1/2. The reflected e.m. pulse is given by

Aref8 sx8,t8d =
1

2p
E

−`

` E
−`

`

rsv8dAin8 s0,tdeiv8te−iv8st8−x8/cddv8dt,

s19d

where we assumed that the reflected pulse moves with the
speed of light and that it is not affected by plasma. This is
justified by the fact that the frequency of the reflected pulse
is well above the Langmuir frequency so that we can neglect
the small difference between the groupsand phased velocity
of the pulse and the speed of light in vacuum. Using the
relationship

E
−`

`

rsv8de−iav8dv8 = − 2pqusade−qa, s20d

whereusad is the theta functionusad=1, if aù0 andusad
=0, if a,0, we carry out the integration in Eq.s19d overv8:

Aref8 sx8,t8d = − qe−qst8−x8/cdE
−`

t8−x8/c

Csgphvphtdesq+iv0gphdtdt,

s21d

where we have absorbed the theta function in the redefinition
of the upper limit of integration.

In order to find the expression of the vector potentials of
the reflected pulse in the laboratory reference frameL we
perform a Lorentz transformation and obtain

Arefsx,td = − qe−qs1+bphdgphst−x/cd

3E
−`

s1+bphdgphst−x/cd

Csgphvphtdesq+iv0gphdtdt.

s22d

Now we introduce two complex functions:

E = Ey + iEz, B = By + iBz, s23d

where Ey,Ez,By,Bz are the transverse components of the
electric and magnetic fields in the reflected e.m. wave. The
electric and the magnetic fields are expressed in terms of the
vector-potential as

FIG. 1. The dependence of the electricssolid lined and magnetic
sdashed lined fields of the initial soliton onx in the laboratory
frame; x is measured in unitsc/vpe; time is set to zero,t=0, and
v=0.85vpe.
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E = −
1

c

]A

]t
, B = i

]A

]x
. s24d

As a result, the explicit expressions for the electric and mag-
netic fields of the reflected pulse take the form

Erefsx,td = s1 + bphdgph
q

c
hArefsx,td + Cfgph

2 vphs1 + bphd

3sct − xdgeis1+bphdgph
2 v0st−x/cdj . s25d

Brefsx,td = iErefsx,td. s26d

The shape of the electric field in the reflected pulse is shown
in Fig. 2. In the ultrarelativistic limits1+bph<2 and 1
−bph<1/2gph

2 d the expressions of the vector potential and of
the electric and magnetic fields can be reduced to the simpler
form

Arefsx,td = − q e−2qgphst−x/cdE
−`

2gphst−x/cd

Csgphvphtdesq+iv0gphdtdt,

s27d

and

Erefsx,td = − iBrefsx,td

= 2gph
q

c
fArefsx,td + C„2gph

2 vph

3sct − xd…e2igph
2 v0st−x/cdg . s28d

By evaluating the two terms in the square brackets in Eq.
s28d numerically, it can be shown that they are of the same
order. Thus, from Eq.s28d and from the definition ofq below
Eq. s18d, we can conclude that the amplitudes of the electric
and magnetic fields in the reflected pulse increase by a factor
of order gph

3/2, i.e., that its intensity is proportional togph
3 .

The frequency of the reflected pulse is up-shifted by the fac-
tor 2gph

2 , as could be expected qualitatively from the consid-
erations on the reflection of a plane wave from a relativistic
ideal mirror in Sec. II. It can also be seen from Eq.s28d that

the reflected pulse is compressed with respect to the initial
one by the factor 2gph

2 . In order to illustrate this effect, in
Fig. 3 we present the electric fields of the initial and reflected
pulses forgph=2.

In a tenuous plasma the frequency up-shift of the reflected
pulse, and its related compression, can be so large that they
can provide a different mechanism of attosecond pulse gen-
eration. The Lorentz factorgph of the wake field generated
by a laser pulse in plasma is equal togph<vd/vpe, wherevd
is the frequency of the laser pulse that generates the wake
plasma wavessee Ref.f4gd. The frequency up-shift of the
portion of the soliton field reflected by the wake plasma
wave is 2gph

2 v0<2gph
2 vpe<2gphvd. Thus, for a 1-µm wave-

length laser pulse, corresponding to the critical plasma den-
sity ncr<1021 cm−3, the factor 2gph required to generate an
attosecond reflected pulse must be of order 103, i.e., the den-
sity of the plasma must be sufficiently low, of the order of
431015 cm−3.

If we take the dimensionless amplitude of the solitonsde-
fined in terms of the soliton frequency in the laboratory
framed to be equal toa0, the equivalent intensity of the e.m.
field is given byI0=cE0

2/4p and is equal toI0<sa0/gphd2

31018 W/cm2. After reflection at the electron density modu-
lations in the wake plasma wave, the intensity of the re-
flected e.m. pulse becomes equal toI ref<gph

3 I0, i.e.,
<a0

2gph31018 W/cm2. Additional light intensification can
occur because of the focusing effect that accompanies the
reflection and that is due to the paraboloidal shape of a rela-
tivistically strong wake plasma wave, as demonstrated in
Ref. f12g, where the mirror interaction with a counterpropa-
gating laser pulse in a tenuous plasma was studied. In the
case of the interaction of the soliton with the wake field the
enhanced scaling of the reflected wave intensity,I ref<gph

5 I0,
leads to<a0

2gph
3 31018 W/cm2. In Ref.f6g it was proven that

within the one-dimensionals1Dd approximation the dimen-
sionless amplitude of a soliton, with a nonvanishing electron
density inside the soliton, should be smaller than 31/2. How-
ever, in the 2D and 3D cases the soliton amplitude can be
substantially higher, as shown by the PIC simulation results
ssee Ref.f8gd. For the plasma density and wake-field param-
eters discussed above corresponding togph<103, assuming

FIG. 2. The dependence of the electricssolid lined and magnetic
sdashed lined fields of reflected pulse onx in the laboratory frame;x
is measured in unitsc/vpe; time is set to zero,t=0,v=0.85vpe, and
gph=100.

FIG. 3. The dependence of the electric field in the incident
sdashed lined and reflectedssolid lined pulse onx in the laboratory
frame; x is measured in unitsc/vpe; time is set to zero,t=0,v
=0.85vpe, andg=2.
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the dimensionless soliton amplitudea0 to be equal to 10, we
obtain that the reflected pulse intensity approaches
1029 W/cm2. This intensity is not far from the critical inten-
sity sthe so called Schwinger intensityd in quantum electro-
dynamics,IShw=531029 W/cm2. In principle, this allows us
to consider the problem of the electron-positron pair produc-
tion by the e.m. field: the Schwinger effectf13g. In addition,
the e.m. field invariants, F=sEref

2 −Bref
2 d /2 and G

=sEref ·Brefd of the plasma wave pulse reflected and focused
by the paraboloidal relativistic mirror are not equal to zero.
We recall that, as shown in Ref.f25g, electron-positron pairs
can be produced in vacuum by a focused e.m. pulse.

IV. CONCLUSION

We have considered the interaction between a relativistic
plasma soliton, generated by a circularly polarized e.m.
wave, and a breaking-wake plasma wave. The electron den-
sity spike associated with such wave acts as a mirror flying
with a relativistic velocity. We have computed the properties
of the reflected pulse by first performing a Lorentz transfor-
mation to the reference frame where the wake plasma wave
is at rest. In this frame we have used the reflection coefficient
derived in Ref.f12g for the frequency components obtained
by Fourier expanding the soliton vector potential. The form
of the reflected pulse in this moving frame has been obtained
by performing the inverse Fourier transform and the ampli-
tude of the reflected pulse in the laboratory frame has then
been obtained by successively performing the inverse Lor-
entz transformation.

The results of the one-dimensional investigation presented
in this paper are partly based on idealizations of the plasma
response and must be considered as a proof of principle of
the possibility of exploiting a different mechanism for ob-
taining high-intensity attosecond pulses. For example, elec-
trons may become trapped because the wake wave was as-
sumed to be close to its breaking limit. Therefore, as a result
of the interaction of the wake wave with the plasma inhomo-
geneity formed by the soliton, a few electrons can be injected
into the wake wave as shown in Ref.f26g.

Within these limitations we have shown that, in the case
of the reflection of a plane wave by a mirror moving with
velocity vph, the frequency is up-shifted by the factors1
+bphd / s1+bphd<4gph

2 fgph=s1−bph
2 d−1/2 is the Lorentz fac-

tor andbph=vph/cg in accordance with the Einstein formula
f23g. We have shown that in a plasma this factor reduces to
2gph

2 in the casev<vpe svpe is the Langmuir frequencyd.
The reflected pulse is compressed with respect to the initial
pulse bys1+bph

2 d / s1−bph
2 d, and the maximum amplitude of

the electric field in the reflected pulse is increased bygph
3/2

times. Thus a substantial increase in field intensity and fre-
quency has been demonstrated.

In a tenuous plasma the frequency up-shift can be so high
that it can provide a different mechanism of the attosecond
pulse generation in the case when the wake field in the
plasma is generated by a femtosecond laser. Thengph
<vd/vpe, wherevd is the frequency of the driver laser pulse
that generates the wake field. The frequency up-shift of the
portion of the soliton reflected by the wake field is equal to
2gph

2 vpe<2gphvd. In order to generate an e.m. pulse in the
attosecond range, the Lorentz factor must be equal togph
=53102, which corresponds to a plasma density of the order
of 431015 cm−3.

If we take into account the additional intensification of the
e.m. field that occurs in a three-dimensional configuration
because of the paraboloidal form of the reflecting wake
plasma wave when this wave is relativistically strong, the
reflected pulse intensity can approach 1029 W/cm2, i.e., it
can approach the Schwinger limit for the electric field. This
makes it possible to consider the production of electron-
positron pairs by such fieldssSchwinger effectd.
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